

Mining Weighted Periodic Patterns by a Weighted Direction
Graph Based Approach for Time-Series Databases

Ye-In Chang 1*, Cheng-An Fu 1, Jia-Zhen Que 1

1 Department of Computer Science and Engineering, National Sun Yat-Sen University
Kaohsiung, Taiwan Republic of China

* Corresponding author. Tel.: 886-7-5252000 (ext. 4334); email: changyi@mail.cse.nsysu.edu.tw
Manuscript submitted October 15, 2020; accepted March 8, 2021.
doi: ???

Abstract: Periodic pattern mining in time series database plays an important part in data mining. However,

most existing algorithms consider only the count of each item, but do not consider about the value of each

item. To consider the value of each item on periodic pattern mining in time series databases, Chanda et al.

proposed an algorithm called WPPM. In their algorithm, they construct the suffix trie to store the candidate

pattern at first. However, the suffix trie would use too much storage space. In order to decrease the

processing time for constructing the data structure, in this paper, we propose two data structures to store the

candidates. The first data structure is Weighted Paired Matrix. After scanning the database, we will transform

the database into the matrix type, and it is used for the second data structures. Therefore, our algorithm not

only can decrease the usage of the memory space, but also the processing time. Because we do not need to

use so much time to construct so many nodes and edges. Moreover, we also consider the case of incremental

mining for the increase of the data length. From the performance study, we show that our proposed

algorithm based on the Weighted Direction Graph is more efficient than the WPPM algorithm.

Key words: Flexible Patterns, Periodic Patterns, Time Series Database, Weighted Direction Graph, Weighted
Patterns

1. Introduction

In data mining, there are many techniques to find meaningful information in the database, such as mining

association rules [1], frequent pattern mining [2, 8], utility pattern mining and periodic pattern mining [3, 4,

5, 6, 7, 9, 10, 11, 12]. Among these research topics, the periodic pattern mining is commonly used on the

time-series database. Therefore, the researches for the time-series databases are mostly accompany with

periodic pattern mining [3, 4, 5, 6, 11, 12]. However, in the real situation, the value of each item may not be

the same. Therefore, some researches consider the periodic pattern accompanied with the weighted value

[3].

In the periodic pattern mining, we not only need to see the frequency of the event, but also need to make

sure that the frequent pattern occurs in the similar period length [12]. For instance, we assume that the

period length is 5, and the minimum threshold is 75%. There is a time-series pattern T1 in Table 1. The event

“ab” frequently appears 4 times over 20/5 = 4 periods, where 20 is the total length of the event sequence.

However, it is not a periodic pattern. Because it does not appear averagely. On the other hand, the event “ab”

of the time-series pattern T2 in Table 1 is a periodic pattern, since it does not only appear frequently, but it

also appears averagely in each period.

mailto:changyi@mail.cse.nsysu.edu.tw

Table 1: An example of the event sequences

Time-Series Database Event Sequence

T1 ababc daccd daccb abcab

T2 abcde abeec dabce abdcd

The reason for why the periodic pattern mining is suitable for time-series database is as follows. The time

event in the database has its timeliness [12]. For example, an event appears frequently in some time, but it

appears frequently again after a long period of time. Such an event is not certainly valuable for the

time-series database. On the other hand, an event appears regularly in the database, and that event perhaps

valuable in the database.

The periodic pattern could be classified into three types in time-series database: symbol periodic patterns,

partial periodic patterns and full cycle periodic patterns [11]. In the partial periodic patterns, the pattern

consists of a sequence, and the sequence may appear periodically [11]. For example, a time-series database

T3 is shown in Fig. 1. The sequence pattern “ab” occurs periodically with the period value which is equal to 4.

The length of the sequence is smaller than or equal to the period value. Moreover, the distance of two

successive patterns should not be longer than the half length of the time-series sequence. For example, given

a time series database T = “abcd efgh abmn”, although the count of pattern “ab” is 2, the distance of the

patterns is 7, which is longer than the half length of the time-series sequence 12/2 = 6, where 12 is the total

length of T. Hence, the pattern “ab” is not the periodic pattern.

Fig. 1: A time-series database T3

Moreover, in some condition, the pattern sometimes has the unwanted event, so some researches [3, 4, 11]

use the “*” to represent it by the don’t care event while finding the flexible patterns. For example, given a

string T= “abcd adcb accd”, although the pattern “abc”, “adc”, “acc” would not be the periodic pattern, the

pattern “a * c” would be the periodic pattern. Because the count of “a * c” is 3. Hence, it is another difficulty,

when we consider about the partial periodic patterns.

Moreover, the most common situation considers the string along with the weight of each item. For instance,

for a string T = “bcda”, according to the weight of each item shown in Table 2, the weight of string T is 0.675.

Since the researches [3, 4] define the weight of a string is the average weight of each item, the weight of

string T is (0.6+0.9+0.5+0.7)/4=0.675.

For another example, there is a string T = “abdcbdcc”, with the weight of each item shown in Table 2, and

we suppose the minimum support threshold, σ=1.6. The mining result of string T would be “b” with the total

weight 0.9*2 = 1.8 and “bd” with the total weight (0.9+0.7)/2*2 = 1.6. Although the count of pattern “c” is 3,

the weight support is 0.5 * 3 = 1.5 < 1.6. Therefore, the pattern “c” would not be the answer.

This is why the weighted pattern mining is difficult, because we should consider the count along with the

weight of each pattern. Furthermore, the pruning phase of the weighted pattern should be more careful. For

example, we consider a pattern T1= “a” and a pattern T2= “ab”, i.e, T1 ⊂ T2. If the count of pattern T2 is larger

than the minimal count σ, then the count of pattern T1 is also larger than σ absolutely. However, if we

consider the weight of each item, the above property would not be established. For instance, there is a string

T= “abdc bdcc abcc”, and the weight of each item is shown in Table 2. Moreover, we suppose the minimum

support threshold, σ=1.4. The total weight of the pattern “ab” is ((0.6+0.9)/2) *2 = 1.5, but the total weight of

pattern “a” is 0.6 * 2 = 1.2. In fact, the pattern “a” ⊂ “ab” and pattern “ab” is periodic pattern; however,

pattern “a” is not periodic pattern. Hence, this is another difficulty of weighted periodic pattern mining.

In the real life condition, the content of a database is commonly increased. Hence, the incremental mining

is important. If we do not consider about the incremental mining, the processing time of the data mining

would be so long. For example, there is a database with the length of 1000, and we do the data mining on this

database. At this time, the database increases new data with the length of 500. If we do not consider about the

incremental mining, we need to reload the whole database with the length of 1500. On the other hand, if we

consider about the incremental mining, we only need to load the new data with the length of 500.

Table 2: Weight of each item

Item Weight

a 0.6

b 0.9

c 0.5

d 0.7

For the concern of the related strategies, Rasheed et al. proposed a suffix tree based algorithm [12]. They

use the suffix tree to mine the periodic patterns. However, Chanda et al. [4] found that the algorithm

proposed by Rasheed et al. [12] has some limitations. For example, they cannot mine the pattern with the

unimportant event “*”. So Nishi et al. proposed an algorithm [4] named FPPM, which is based on the suffix

trie. The FPPM algorithm can mine the pattern with the unimportant event “*”. However, Chanda et al. [3]

consider that the FPPM algorithm [4] still has some disadvantage, since the FPPM [4] algorithm cannot mine

the pattern with weight of each item. It means that the FPPM algorithm [4] considers only the count of each

item. Hence, Chanda et al. [3] modify the mining process part of the FPPM algorithm [4], they consider that

the weight of each item should be put in the mining process. For example, the count of item A is 3, and the

weight of item A is 0.8. Moreover, the threshold is 2. Later, they use the multiplication of the weight and the

count of item A to judge whether item A is a periodic pattern or not. In this example, the multiplication of the

weight and the count of item A is 0.8 * 3 = 2.4, which is larger than the threshold 2, so the item A is the

periodic pattern. Hence, Chanda et al. proposed an algorithm named WPPM [3].

 The WPPM algorithm [3] can actually handle more conditions than the FPPM algorithm [4] does, since

the WPPM algorithm [3] considers about the weight of each item. Moreover, the WPPM algorithm [3] is more

efficient than FPPM algorithm [4] from their experiments. However, we consider that the suffix trie part of

WPPM algorithm [3] wastes too much memory space, which also affects the processing time. For an input

string T = “abccabdcacdcabdc”, the suffix trie of T will have at least 92 nodes and 91 edges, and this will be the

waste of memory use. To reduce the main memory space and the processing time, in this paper, we propose

the Weighted Time Position Join algorithm based on the Weighted Direction Graph to store the candidate

patterns. By using the Weighted Direction Graph, there will be only 4 nodes and 8 edges in Weighted

Direction Graph for the same input string T, where 4 is the number of the unique symbols and 8 is the

number of different pairs of continuous symbols. Later, we use Weighted Direction Graph to mine the period

pattern of the input string T. Therefore, our Weighted Direction Graph not only can reduce the usage of the

memory space, but also the processing time. Note that we do not need to use so much time to construct so

many nodes and edges. Moreover, we consider about the incremental mining on the weighted periodic

pattern mining based on our Weighted Direction Graph. From our experimental results, we show that our

approach is more efficient than the WPPM algorithm [3].

 The rest of the paper is organized as follows. In Section 2, we give a survey of some algorithms for

mining periodic patterns in time-series databases. In Section 3, we present the proposed Weighted Time

Position Join algorithm. In Section 4, we present the performance study of our algorithm and make a

comparison between our algorithm and the WPPM algorithm [3]. Finally, Section 5 gives the conclusion.

2. A Survey of Algorithms for Mining Periodic Patterns in Time Series Databases

In this section, we will introduce how to mine periodic patterns in time series databases by the
following algorithms, including the FPPM algorithm [4], and the WPPM algorithm [3].

Chanda et al. [4] proposed an efficient approach FPPM algorithm to mine flexible periodic patterns based

on the suffix trie structure. This approach is capable of generating periodic patterns by skipping

intermediate unimportant events and detecting all tree types of periodicity in a single run only. For the

mining process, in the initial step, given a time series string, they use this string to construct a suffix trie.

Later, through the pruning phase, they prune the suffix trie, and this trie will be a period value P depth trie.

Finally, they use the pruned trie to run the FPPM algorithm to mine the periodicity. In the mining process of

the FPPM algorithm. As the confidence satisfies the minimum confidence threshold, the regarded pattern is a

valid pattern, and the valid patterns will be moved to the next depth to been joined in the next depth.

In the FPPM algorithm, it does not consider about the weight of any event, so the WPPM algorithm will

consider the weight of each event to see the different result by the FPPM algorithm [3]. In the mining process,

it is mostly the same as the FPPM algorithm, the difference is that they consider about the weight of each

event. They define the weight of each event which is a real number between 0 and 1. Later, they construct

the suffix trie and the pruned suffix trie by T. The suffix trie and the pruned suffix trie are the same as the

FPPM algorithm. The difference is that if the WPPM algorithm wants to determine whether the pattern is

valid, it need to check whether the weight support is larger or smaller than the minimum support threshold,

σ.

3. The Weighted-Time Position Join Algorithm

The existing algorithms [3, 4] mostly use so much time and memory space to mine the periodic patterns,

and they use the periodicity detection algorithm proposed by Rasheed et al. [12] to find the candidates of the

periodic patterns. However, the periodicity detection algorithm uses three levels of loops to find the

candidates. Moreover, the suffix trie part of the WPPM algorithm [3] will use so much memory space to store

the nodes and edges of the trie. To reduce the time and the space of the mining process, we propose the

weighted-time position join algorithm to mine the periodic patterns efficiently.

3.1. Data Structure

Here, we present the weighted time-position join algorithm, which is revised from [9]. We apply it to

improve the performance of the suffix trie part of WPPM algorithm [3]. We consider that the suffix trie will

use so much memory space, which will cause much unnecessary waste of memory space. For example, given

a string T= “abccabdcacdcabdc”, which is the string presented in [3], with |T|=16, if we use string T to

construct the suffix trie, it will have at least nighty two nodes and lots of edges. However, for the same input,

by using our weighted time-position join algorithm, there will be only four nodes and eight edges. The

weighted time-position algorithm contains two steps. First, we construct the weighted paired matrix, and

use the weighted paired matrix to construct the weighted direction graph. Second, we traverse the weighted

direction graph to find the periodic patterns. We will introduce the two steps of the weighted time-position

join algorithm later, and Table 3 shows the variables which we will use in the algorithm. In the real world,

each item has its own weight as the profit or price. We construct the table to store the weight of each item as

shown in Table 4.

Table 3: Variables

Variable Meaning

T The time series string

W (P) The weight value of pattern P

Support(P) The support value of pattern P

θ The maximum event skipping threshold

σ The minimum support threshold

M axW The maximum weight of a given database

Table 4: Weighted table

Item Weight

a 0.8

b 0.6

c 0.7

d 0.5

The weight paired matrix WPM is a matrix which we use it to store the adjacent symbols. Let sequence

S=< s0, s1, s2, ..., sn> with length n, and a two dimensional m × m weighted paired matrix WPM, where m is

the count of unique symbols in S. For every two continues symbol st, st+1 of sequence T, we store the

occurrence position t of st, st+1 into WPM [st, st+1]. That is, for the sequence S, we will get the substring < s0,

s1 >, and then we store the occurrence position 0 of the substring into WPM [s0, s1]. Next, we get the

substring < s1, s2 >, and then we store the occurrence position 1 of the substring into WPM [s1, s2], and so on.

On the other hand, the decimal number in WPM [s1, s2] is the average weight of the item s1 and the item s2.

Meanwhile, WPM [si, si], like WPM [s1, s1], is the weight of item si.

For example, there is a sequence T shown in Fig. 2, where the number under the sequence is the position

of each symbol. Note that the string is proposed in [3]. Moreover, we use sequence T to construct the paired

matrix, which is shown in Fig. 3. As we can see, the occurrence position of each continues symbol is stored

in the matrix. That is, the pattern “ab” occurs in positions [0, 4, 12], so the positions are stored in WPM [a, b].

In the same way, the pattern “ca” occurs in positions [3, 7, 11], so the positions are stored in WPM [c, a]. On

the other hand, the decimal number in WPM [a, b] is the average weight of the pattern ab. According to Table

4, the weight of the item a is 0.8, and the weight of item b is 0.6, so the average weight is (0.8+0.6)/2=0.75,

and it is stored in WPM [a, b].

Fig. 2: The example string T

Fig. 3: The example of weighted paired matrix

After all the positions are stored in the matrix WPM, we use matrix WPM to construct the weighted

direction graph WDG. We will traverse matrix WPM to construct the graph. That is, if matrix WPM [a, b] is

blank, we will ignore it. On the other hand, if node a or node b does not exist in the graph, then we will

construct the node which stores the item name and the corresponding weight of node a or node b. Meanwhile,

we will construct the edge which points from node a to node b, and the edge will store the occurrence

position of the pattern ab. For example, from Fig. 3, suppose we are at matrix WPM [a, b], and there is

nothing in the weighted direction graph. Since node a and node b are not in the graph, we construct node a

and node b and store the corresponding weight first. After this, matrix WPM [a, b] stores [0, 4, 12], which

means that pattern ab appears at positions 0, 4 and 12, so we construct an edge from node a to node b, and

store the occurrence position in the edge. For another example, when we traverse to matrix WPM [a, c], and

node a is already in the graph, we just need to construct node c and store the weight of item c in the node.

After that, we construct the edge points from node a to node c and store the occurrence position into the edge,

and so on.

There will be m nodes in the graph, where m is the number of unique symbols in string S. Each node will

store each unique symbol and its corresponding weight W. Moreover, there will be n edges, where n is the

count of WPM [t1, t2] which has the occurrence positions in matrix WPM. Therefore, in Fig. 3, we have n = 8.

The edge stores the occurrence position of the connected two symbols. Fig. 4 shows the example of the direct

graph constructed by Fig. 3. As we can see, the edge between node a and node b stores [0, 4, 12], it means

that the node a and the node b are continues symbols, and their occurrence positions are [0, 4, 12]. For

another special example, there is an edge that starting from c, and it points to the same node c, it means that

there is a pattern cc and it appears at position 2. Totally, there are four nodes and eight edges in Fig. 4.

Moreover, the value besides each node means the weight of the symbol.

Fig. 4: The example of weighted direction graph

3.2. The Mining Process

Here, we will introduce the mining process. In order to discover periodic patterns in the time-series

database, Chanda et al. proposed an algorithm [4] which can find all possible valid periods with

corresponding occurrence vectors.

The input of the algorithm is an occurrence vector of pattern X with size k, and support threshold σ. The

result of the algorithm will be the periods with the corresponding occurrence vector. For example, we

suppose that an occurrence vector Occ_vec = ”2, 3, 7, 9, 11, 15” is the input, and support threshold σ = 1. The

result of the input will be as follows. For the period value p = 4, one of the corresponding occurrence vectors

will be ”3, 7, 11, 15”. Moreover, for p = 4, another occurrence vector = ”1, 5, 13”. Note that the difference

between two adjacent occurrences could be the multiple of the period value p. Hence, ”1, 5, 13” is also the

corresponding occurrence for p = 4. Moreover, for the period value p = 6, the corresponding occurrence

vector will be ”3, 9, 15”. The pseudo code of existing periodicity detection algorithm [4] is shown in Fig. 5 The

first for loop is finding the first parameter st which we want to use later. The second for loop will find the

second parameter δ and period = δ - st. Meanwhile, st and δ will be added into a vector V. The third for loop

will find the third parameter, and if the st subtracting from the third parameter will be divisible by period

value p, the third parameter will be added into vector V. After the third for loop, there will have a formula to

judge whether the vector V is the final answer or not.

Fig. 5: Existing periodicity detection algorithm [4]

After the construction of WDG graph, we can use it to do the mining process for the given period p. Given a

time series string T = “abccabdcacdcabdc” for example, the weight of each item is shown in Table 4. Minimum

threshold σ = 2, and maximum skipping threshold θ = 2, and period value p = 4 are used in this example to

explain the mining process of this algorithm.

From the string T, the weighted paired matrix is constructed, which is shown in Fig. 3. The weighted

direction graph is constructed by the weighted paired matrix, which is shown in Fig. 4.

Basically, for each different symbol, we will perform the following mining process. Let’s use symbol a as an

example to explain the details of the mining process. The mining process of depth 1 is shown in Fig. 6. There

is only one symbol a in depth 1, so we just need to check whether the weighted support is larger than the

minimum threshold σ. Note that the occurrence vector for each different symbol is recorded in an array OC

which will be used in determining whether such a symbol is a periodic pattern, i.e., for the following mining

process of depth 1. The occurrence vector of symbol a is ”0, 4, 8, 12”, as recorded in array OC shown in Table

5. Note that the results of procedure Periodicity Detection are stored in an array OL, which is shown in Table

6. The support of symbol a is 4, and the weight of symbol a is 0.8 according to Table 4. Therefore, the

weighted support is 0.8*4 = 3.2, and it is larger than the minimum threshold σ = 2, so it is considered as the

valid weighted periodic pattern.

Table 5: The array OC

Pattern Occurrence vector

a [0, 4, 8, 12]

b [1, 5, 13]

c [2, 3, 7, 9, 11, 15]

d [6, 10, 14]

Table 6: The array OL

Pattern (Period, Occurrence vector)

OL[a] {(4, [0, 4, 8, 12])}

OL[b] {(4, [1, 5, 13])}

OL[c] {(4, [3, 7, 11, 15]), (6, [3, 9, 15])}

OL[d] {(4, [6, 10, 14])}

Fig. 6: The mining process of depth 1: (a) the traversed

WDG graph of depth 1; (b) the periodic pattern of depth 1.

Next, the mining process moves to depth 2, and the mining process of depth 2 is shown in Fig. 7. First, we

need to check where node a points to. In this example, the node a points to node b and node c. Hence, we store

the occurrence vector of node b related to node a = ”0, 4, 12” (i.e., count = 3) and node c related to node a = ”8”

(i.e., count = 1). Next, the support of pattern “ab” is 3, and the weight of pattern “ab” is the average of item a

and item b. Hence, the average weight of pattern ab is (0.8+0.6)/2=0.7, and the weighted support of pattern

ab is 3 * 0.7=2.1, which is larger than the minimum threshold σ = 2, so pattern ab is the weighted periodic

pattern. However, in the same way, the weighted support of pattern ac is 0.75, which is lower than the

minimum threshold σ = 2. Therefore, the pattern ac is not the weighted periodic pattern. On the other

hand, there is a table storing the pattern “a *” (i.e., the starting symbol a followed with any symbol), because

we want to mine the pattern which can skip the unimportant events represented by symbol “*”. The

occurrence vector of pattern “a *” is the same as the occurrence vector of symbol a, i.e., ”0, 4, 8, 12”. The

pattern ending with “*” would not be mined in this depth, but it would help to generate the pattern in the

future.

Fig. 7: The mining process of depth 2: (a) the traversed

WDG graph of depth 2; (b) the periodic pattern of depth 2.

For the pattern of depth ≥ 3, we need to use the time-position join. The meaning of the time-position join

is the connection between pattern XP (X1, X2, ..., Xw) and pattern YP (Y1, Y2, ..., Yt). First, we have the

condition Xw = Y1. Second, the time position of symbol Xw is the same as the time position of symbol Y1.

Then, the resulting pattern of the time-position join between pattern XP and pattern YP is (X1, X2, ..., Xw,

Y2, ..., Yt). (Note that the occurrence vector of the result after the time-position join is the subset of the

occurrence vector of pattern XP.) Later, the mining process moves to depth 3, the mining process of depth 3

is shown in Fig. 8.

Fig. 8: The mining process of depth 3: (a) the traversed

WDG graph of depth 3; (b) the periodic pattern of depth 3.

At depth 3, we first need to see the occurrence vector of the edges. For example, the occurrence vector on

the edge between node a and node b is [0, 4, 12]. It means that pattern “ab” is at positions 0, 4 and 12. On the

other hand, the occurrence vector on the edge between node b and node c is [1], it means that pattern “bc” is

at position 1. Therefore, we can combine pattern “ab” at the position 0 with pattern “bc” at the position 1, it

will become pattern “abc” starting at position 0. That is, we perform the time position join operation

between pattern “ab” and pattern “bc”. For considering the flexible pattern “a * c”, we record the starting

position of symbol a, i.e., 0 as the starting position of the flexible pattern “a * c”. Since the number of the

occurrence vector of edge bc is 1, we can stop the following connecting process between edge ab and edge bc.

Moreover, for position 0 in the occurrence vector of edge ab, we also mark it as used. In the same way,

pattern “abd” can be constructed (i.e., by using the time position join operation) with pattern ab at the

positions 4 and 12, and pattern bd at the position 5 and 13, respectively. Note that for this case of trying to

connect edge ab (with the occurrence vector [0, 4, 12]) and edge bc (with the occurrence vector [5, 13]), we

may have to consider all 6 possible cases of tests. However, in fact, we only have to consider the unchecked

position x of the occurrence vector of edge ab with the unchecked position (x+1) of the occurrence vector of

edge bc. Therefore, for the case of the connection of edge ab and edge bc, we only have to do two tests,

instead of four tests of unmarked positions of edge ab (with two unmarked positions in its occurrence vector)

and edge bc (with two unmarked positions in its occurrence vector). Similarly, for concerning the flexible

pattern “a * d”, we include the concern of pattern “abd” (i.e., the previous pattern “ab” shown in level 2) and

pattern “acd” (i.e., the previous pattern “ac” shown in level 2). Note that in such a concern, we care about the

possible joinable pattern. (Note that pattern ac is an unpassed pattern in depth 2, but it still needs to be

considered in depth 3 under the “*” condition.) In general, if the occurrence gap of the nearly two continues

edges with the same direction is 1, it means that we can generate the new pattern with length 3. After we

have found all the events at depth 3, we can generate the candidate patterns like these patterns at depth 2.

For the concern of the candidate pattern of the following level, i.t., level 4, we record the related positions of

pattern “ab *” and pattern “a * *”, which are the same as the related positions of pattern “ab” and pattern “a

*”, respectively. Note that the passed pattern “a * d” will also be concerned in the following level 4. (Note that

for the average weight of a pattern containing one or more number of “*” symbols, we let it be the average

weight of all symbols. In our example, the average weight of all of symbols (‘a’, ‘b’, ‘c’, ‘d’) is

(0.8+0.6+0.7+0.5)/4 = |0.65| ≈ 0.7.) Finally, we calculate the weighted support of patterns which we

generated previously and check whether the weighted support is larger than the minimum threshold σ or

not.

Finally, the mining process moves to depth 4, the mining process of depth 4 is shown in Fig. 9. The mining

process at depth 4 is the same as the mining process at depth 3. For pattern “a * d” with positions ”4, 8, 12”,

we concern the possible joinable positions of edge dc. That is, whether positions 4 + 2 = 6, 8 + 2 = 10, 12 + 2 =

14 exist in edge dc. Those tests are all satisfied, so the support of pattern “a * dc” is 3. Next, for pattern “ab *”

with positions ”0, 4, 12”, we concern the possible joinable patterns of edges bdc and bcc. To achieve this goal,

we must first check whether patterns “bdc” and “bcc” exist. Therefore, we check whether edge bd and edge dc

are joinable. Moreover, we check whether edge bc and edge cc are joinable. The result of two tests are all

joinable, due to 5 + 1 = 6, 13 + 1 = 14 and 1 + 1 = 2. Since the joinable positions of pattern “ab” are “0, 4, 12”,

the resulting joinable positions of pattern “ab * c” are ”0, 4, 12”. For pattern “a * *”, when we concern the

following possible joinable pattern through connected directional edge, the possible pattern of length 4 is “a *

*c” with joinable positions ”0, 4, 8, 12”. Those possible joinable patterns include pattern “abdc” (with starting

positions 4 and 12), pattern “abcc” (with starting position 0) and pattern “acdc” (with starting position 8).

That is, the number of the joinable patterns is 4. Finally, we calculate the weighted support of the generated

patterns. The result of flexible periodic patterns with the starting symbol a is shown in Table 7. Moreover, the

result of flexible periodic patterns with the starting symbol b and symbol c are shown in Table 8. (Note that

the weighted support of the strings starting with symbol d are smaller than the minimum threshold σ, so

there is no result starting with symbol d.)

Table 7: The result of flexible patterns with the starting symbol a

Pattern Occurrence vector

a [0, 4, 8, 12]

ab [0, 4, 12]

a ∗ d [4, 8, 12]

a ∗ ∗c [0, 4, 8, 12]

ab ∗ c [0, 4, 12]

a ∗ dc [4, 8, 12]

Table 8: The result of flexible patterns with the starting symbol b and symbol c

Pattern Occurrence vector

b ∗ c [1, 5, 13]

c [3, 7, 11, 15]

ca [3, 7, 11]

ca ∗ d [3, 7, 11]

c ∗ ∗d [3, 7, 11]

Fig. 9: The mining process of depth 4: (a) the traversed

WDG graph of depth 4; (b) the periodic pattern of depth 4.

After the mining process, sometimes the databases will add new data into the databases. At this time, if we

do not consider the incremental way to handle such condition, we need to reload all the database and

reconstruct the whole data structure. Hence, we consider the incremental way of our weighted direction

graph.

Suppose there is a string S = “abccabdcacdcabdc”, Fig. 10 shows the WDG graph of the string S. Now we add

a new string S2 = “bde” behind the string S, and we do not need to reload the whole string S. However, we

need the last symbol of string S, because the symbol “c” of string S and the symbol “b” of string S2 should be

connected. Hence, string S3 “cbde” will be the new input.

Fig. 10: The WDG of the input string S

First of all, we use string S3 to construct a new WPM. Fig. 11 shows the constructed WPM. Note that the

reason for there are ”15, 16, 17”, rather than ”0, 1, 2”. Because the string S3 is actually connected behind the

string S. Hence, the occurrences should be added (|S| - 1).

Fig. 11: The WPM of the input string S3

Later, we use the new WPM to update the original WDG graph. Note that there are three cases, when we

update the WDG graph. For Case 1, if the node exists and the edge also exists, then we just need to add the

new occurrence on the edge. For Case 2, if the node exists but the edge does not exist, we need to construct a

new edge and add the occurrence. For Case 3, if the node does not exist, we need to construct a new node and

a new edge. For example, when we read “cb” on the WPM , we need to construct a new edge pointing from

node c to node b and add the occurrence vector [15] on the edge. The reason is that there is no edge pointing

from node c to node b, which is Case 2. Fig. 12 shows the updating process.

Fig. 12: The updating process of the WDG for Case 2

Later, when we read “bd” on the WPM, we just need to add new occurrence on the edge. The reason is that

there is an edge pointing from node b to node d, which is Case 1. Fig. 13 shows the updating process.

Fig. 13: The updating process of the WDG for Case 1

Finally, when we read “de” on the WPM, we construct a new node e and an edge pointing from node d to

node e. Moreover, we add the occurrence vector [16] on the edge. The reason is that there is no node e, which

is Case 3. Fig. 14 shows the updating process. After the update of the WDG graph, we can use this WDG graph

to run the mining process.

Fig. 14: The updating process of the WDG for Case 3

3.3. Comparison

 In this section, we discuss the difference between our proposed WDG graph and the WPPM algorithm

[3]. First, the number of nodes and the number of edges are different. Given a string S, the number of the

unique symbols for string S is C, where C ≤ |S|. The number of nodes in our WDG graph is definitely C. The

number of edges in our WDG graph is mostly C*(C-1). Since in the worst condition, each node could be

connected with other nodes, and our WDG graph has directionality, we do not need to divided by two. On the

other hand, the number of nodes in the suffix trie is the addition of the length of all the substrings in the

string S in the worst case. Hence, it is equal to (|S| + (|S|-1) + ... + 1) = (|S| + 1) *|S|/2+1, where the last plus 1

is the root node. The number of the edges in the suffix trie is (|S| + 1) *|S|/2+1-1, since it is a tree structure.

(Note that the number of edges is the number of total nodes minus 1.)

For example, given string S = “abccabdcacdcabdc”, the number of unique symbol C = 4. The number of the

nodes in our WDG graph is 4. The number of the edges in our WDG graph is 8, which is less than 4*(4-1) =12

needed in the worst case. On the other hand, the number of the nodes in the suffix trie is 92. The number of

the edges in the suffix trie is 91, since it is a tree structure.

Second, our WDG graph considers about the incremental mining. The number of the reloaded items is

different. Since we consider about the incremental mining, we only need to reload the last item in the

original database to do the connecting operation. However, the WPPM algorithm should read the whole

database with the original data and the new data.

4. Performance

In this section, we present the performance study of our weighted-time position join algorithm and the

WPPM algorithm [3] on time-series data mining. We use the synthetic dataset as data source and the real

dataset from the dataset repository https://www.investing.com/commodities/brent-oil-historical-data

4.1. The Performance Model

In the performance method, we will compare the processing time of these two algorithms. The synthetic

dataset which we have used is T3400.C5, where the parameters T and C mean the length of the input string,

and the number of the unique characters of the input string, respectively. (Note that the length of the

synthetic string with five different symbols is 3400. Moreover, the weight value of each unique item will be

generated randomly between 0 and 1, and the weighted table WT will be listed from these weight values.)

In the real datasets, we will use the Brent Oil Company Data Set [3] to do the experiment. There are 1530

tuples and the number of the unique characters is 7 in the dataset. Through these experiments, we want to

see how the length of datasets affects the processing time of these two algorithms. Moreover, the number of

unique characters should be the same as the number of the nodes of our algorithm.

4.2. Experiments Results

First, we compare the processing time under the change of the length of the input and the change of the

period value p for the synthetic datasets. Second, we compare the processing time under the change of the

length of the input and the change of the period value p for the real dataset. Third, we will compare the

processing time on the incremental dataset. The correctness of our WDG algorithm is verified by checking

whether the number of the result patterns of our WDG algorithm is the same as that of the WPPM algorithm.

In Fig. 15, we show the comparison of the processing time for the synthetic dataset T3400.C5 on the

change of the input length. In this experiment, we set the period value p = 8, and threshold = 2. (Note that we

create 10 different strings of length 3400 randomly. Then, for each string, we record the processing time of

the concerned algorithm for the first 1500, 2000, 2500, 3000 and 3400 symbols, respectively. Finally, for the

concerned algorithm, we compute the average of the processing time of the 10 cases of different strings with

the same length.) From Fig. 15, we show that the processing time of our WDG algorithm is faster than the

WPPM algorithm. Moreover, the increase on the processing time of the WPPM algorithm is much more than

that of our WDG algorithm. The reason is that the processing time of constructing the data structure of our

WDG algorithm is faster than that of the WPPM algorithm. For example, given a string T = “abccabdcacdcabdc”,

with |T| = 16, if we use T to construct the suffix trie, it will have at least nighty two nodes and lots of edges.

However, for the same input, by using our weighted time-position join algorithm, there will be only four

nodes and eight edges.

https://www.investing.com/commodities/brent-oil-historical-data

Fig. 15: A comparison of the processing time for the synthetic dataset

T3400.C5 (with period = 8) under the change of the length

In Fig. 16, we show the comparison of the processing time (i.e., the average of the processing time of

testing 10 different strings with the same length) for the synthetic datasets T3400.C5 on the change of the

period value p. In this experiment, we set the input length = 2000 (i.e., the first 2000 symbols), and threshold

= 2. From Fig. 16. we show that the processing time of our WDG algorithm is faster than that of the WPPM

algorithm. Moreover, the increase on the processing time of the WPPM algorithm is the same as our WDG

algorithm. The reason is that the processing time of constructing the data structure of our WDG algorithm is

faster than that of the WPPM algorithm. Although the value of p increases, the times of join operations in our

WDG algorithm increases. However, in our WDG algorithm, the reducing time on the construction of the data

structure is more than the increasing time on the joining property.

Fig. 16: A comparison of the processing time for the

synthetic dataset T3400.C5 under the change of the period

In Fig. 17, we show the comparison of the processing time for the Oil datasets on the change of the input

length. In this experiment, we set the period value p = 8, and threshold = 2. From Fig. 17, we show that the

processing time of our WDG algorithm is faster than that of the WPPM algorithm. Moreover, the increase on

the processing time of the WPPM algorithm is much more than that of our WDG algorithm. The reason is the

same as what we have mentioned above.

Fig. 17: A comparison of the processing time for the Oil dataset

(with period = 8) under the change of the length

In Fig. 18, we show the comparison of the processing time for the Oil datasets on the change of the period

value p. In this experiment, we set the input length = 2000, and threshold = 2. From Fig. 18. we show that the

processing time of our WDG algorithm is faster than that of the WPPM algorithm. Moreover, the increase on

the processing time of the WPPM algorithm is the same as that of our WDG algorithm. The reason is the

same as we have mentioned above

Fig. 18: A comparison of the processing time for

the Oil dataset under the change of the period

Here, we show the processing time on incremental mining for the above two databases, including the

synthetic dataset T3400.C5, and the Oil dataset. In this experiment, we set the period value p = 8, and

threshold = 2. However, they [3] do not mention about the incremental way on the WPPM algorithm. Hence,

the way of the testing on the incremental way for the WPPM algorithm is that we add the processing time

from the previous mining and the processing time after the string size is increased. For example, after we get

the processing time on the length of 1000, the database adds 300 items behind the original database, and we

want to mine the database on the length of 1300. Since the WPPM algorithm does not have the incremental

way, we need to mine the whole database on the length of 1300. Hence, the processing time on the

incremental way of the WPPM algorithm is the addition of the processing time on the database length of 1000

and the processing time on the database length of 1300. (Note that since the WPPM algorithm should be

ready for any possible value of the period p, the suffix trie is always needed to be constructed in the first step,

Therefore, no matter the new added symbol already exists or does not exist in the current suffix trie, each

path of the suffix trie will be traversed again for the new added symbol.)

In Fig. 19, Fig. 20, we show the comparison of the processing time for the incremental synthetic dataset

T3400.C5, and the incremental Oil dataset respectively. From Fig. 19, Fig. 20, we show that our incremental

way is much more efficient than the non-incremental way on the WPPM algorithm.

Fig. 19: A comparison of the processing time for the incremental

synthetic dataset T3400.C5 (the initial length is 1000)

Fig. 20: A comparison of the processing time for the

incremental Oil dataset (the initial length is 1000)

5. Conclusion

In this paper, we have proposed a weighted time position join algorithm that can efficiently mine the

weighted periodic patterns. In the data preprocessing, we have constructed the weighted direction graph,

which uses fewer number of nodes and edges than the WPPM algorithm for the same input. Moreover, we

have considered the incremental mining for our algorithm. From the performance study, we have shown that

our algorithm is more efficient than the WPPM algorithm.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Chang and Fu conducted the research; Fu and Qiu analyzed the data and wrote the paper; all authors had

approved the final version.

Acknowledgment

This research was supported in part by the Ministry of Science and Technology of Republic of China under

Grant No. MOST 109-2221-E-110-045.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” Proc. of the

20th Int. Conf. on Very Large Data Bases, pp. 478–499, Sept. 1994.

[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, Y.-K. Lee, and H.-J. Choi, “Single-pass incremental and interactive

mining for weighted frequent patterns,” Expert Systems with Applications, Vol. 39, No. 9, pp.

7976–7994, 2012.

[3] A. K. Chanda, C. F. Ahmed, M. Samiullah, and C. K.Leung, “A new framework for mining weighted periodic

patterns in time series databases,” Expert Systems with Applications, Vol. 79, pp. 207–224, 2017.

[4] A. K. Chanda, S. Saha, M. A. Nishi, M. Samiullah, and C. F. Ahmed, “An efficient approach to mine flexible

periodic patterns in time series databases,” Engineering Application of Artificial Intelligence, Vol. 44, pp.

46–63, 2015.

[5] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Periodicity detection in time series databases,” IEEE Trans.

on Knowledge and Data Engineering, Vol. 17, No. 7, pp. 875–887, July 2005.

[6] R. Faraz and A. Reda, “STNR: A suffix tree based noise resilient algorithm for periodicity detection in

time series databases,” Applied Intelligence, Vol. 32, No. 3, pp. 267–278, June 2010.

[7] P. Fournier-Viger, Z. Li, C.-W. Lin, R. U. Kiran, and H. Fujita, “Efficient algorithms to identify periodic

patterns in multiple sequences,” Information Sciences, Vol. 489, pp. 205-226, 2019

[8] G. Lee, U. Yun, and K. H. Ryu, “Sliding window based weighted maximal frequent pattern mining over

datastreams,” Expert Systems with Applications, Vol.41, pp. 694-708, 2014.

[9] C. E. Li and Y. I. Chang, “A time-position join method for periodicity mining in time series databases,”

Proc. of the Int. Computer Symposium, pp. 294–299, 2016.

[10] S. Ma and J. L. Hellerstein, “Mining partially periodic event patterns with unknown periods,” Proc. of the

17th Int. Conf. on Data Engineering, pp. 205–214, 2001.

[11] M. A. Nishi, C. F. Ahmed, M. Samiullah, and B.-S. Jeong, “Effective periodic pattern mining in time series

databases,” Expert Systems with Applications, Vol. 40, pp. 3015–3027, 2013.

[12] F. Rasheed, M. Alshalalfa, and R. Alhajj, “Efficient periodicity mining in time series databases using suffix

trees,” IEEE Trans. on Knowledge and Data Engineering, Vol. 23, No. 1, pp. 79–94, Jan. 2011.

 Ye-In Chang received her B.S. degree in Computer Science and Information Engineering

from National Taiwan University, Taipei, Taiwan, in 1986. She received her M.S. and Ph.D.

degrees in Computer and Information Science from The Ohio State University, Columbus,

Ohio, in 1987 and 1991, respectively. From August 1991 to July 1999, she joined the

faculty of Department of Applied Mathematics at National Sun Yat-Sen University,

Kaohsiung, Taiwan. From August 1997, she has been a Professor in Department of Applied

Mathematics at National Sun Yat-Sen University, Kaohsiung, Taiwan. Since August 1999,

she has been a Professor in Department of Computer Science and Engineering at National Sun Yat-Sen

University, Kaohsiung, Taiwan. Her research interests include database systems, distributed systems,

multimedia information systems, mobile information systems and data mining.

C. A. Fu received M.S. degrees in Computer Science and Engineering from National Sun

Yat-Sen University in 2019. His research interests include data mining and distributed

computing. He is currently a system designer in Taiwan.

J. Z. Qiu received B.S. degree from Yuan Ze University in 2019. He is currently a M.S.

student in Department of Computer Science and Engineering at National Sun Yat-Sen

University in Taiwan. His research interests include data mining and distributed

computing.

